

Sie können die QR Codes nützen um später wieder auf die neuste Version eines Gesetzestexts zu gelangen.

Anl. 10 KV

KV - Kraftstoffverordnung 2012

② Berücksichtigter Stand der Gesetzgebung: 13.06.2024

Regeln für die Berechnung des Beitrags von Biokraftstoffen und des entsprechenden Vergleichswerts für fossile Brennstoffe zum Treibhauseffekt

Typische Werte und Standardwerte für Biokraftstoffe und Biomethan bei Herstellung ohne Netto -CO 2-Emissionen infolge von Landnutzungsänderungen;

Herstellungsweg des Typische Werte für die Standardwerte für die Biokraftstoffs Minderung von Minderung

Treibhausgasemissionen Treibhausgasemissionen

aus 67% 59% Ethanol

Zuckerrüben (ohne Biogas Schlempe, Erdgas als

Prozessbrennstoff in konventioneller

Anlage) Ethanol

aus 77% 73%

Zuckerrüben (mit Biogas Schlempe, Erdgas als

Prozessbrennstoff in konventioneller

Anlage)

Ethanol aus 73% 68%

Zuckerrüben (ohne Biogas Schlempe, Erdgas als

Prozessbrennstoff in KWK-Anlage (*))

Ethanol aus 79% 76%

Zuckerrüben (mit Biogas aus Schlempe, Erdgas

als

Prozessbrennstoff in

KWK-Anlage (*))

Ethanol aus 58% 47%

Zuckerrüben (ohne Biogas Schlempe,

Braunkohle Prozessbrennstoff in KWK-Anlage (*))

Ethanol aus 71% 64%

Zuckerrüben (mit Biogas Schlempe, Braunkohle als

Prozessbrennstoff in

KWK-Anlage (*))

Ethanol aus Mais	48%	40%
(Erdgas als Prozessbrennstoff in konventionellen- Anlagen)		
Ethanol aus Mais (Erdgas als Prozessbrennstoff in KWK- Anlage (*))	55%	48%
Ethanol aus Mais (Braunkohle als Prozessbrennstoff in KWK-Anlage (*))	40%	28%
Ethanol aus Mais (forstwirtschaftliche Reststoffe als Prozessbrennstoff in KWK-Anlage (*))	69%	68%
Ethanol aus anderen Getreiden, ohne Mais (Erdgas als Prozessbrennstoff in konventioneller Anlage)	47%	38%
Ethanol aus anderen Getreiden, ohne Mais (Erdgas als Prozessbrennstoff in KWK-Anlage (*))	53%	46%
Ethanol aus anderen Getreiden, ohne Mais (Braunkohle als Prozessbrennstoff in KWK-Anlage (*))	37%	24%
Ethanol aus anderen Getreiden, ohne Mais (forstwirtschaftliche Reststoffe als Prozessbrennstoff in KWK-Anlage (*))	67%	67%
Ethanol aus Zuckerrohr	70%	70%
Ethyl-Tertiär- Butylether /ETBE), Anteil aus erneuerbaren Quellen	Wie beim Herstellungsweg für Ethanol	Wie beim Herstellungsweg für Ethanol
Tertiär-Amyl-Ethyl- Ether /TAEE) Anteil aus erneuerbaren Quellen		Wie beim Herstellungsweg für Ethanol
Biodiesel aus Raps	52%	47%
Biodiesel aus Sonnenblumen	57%	52%
Biodiesel aus Sojabohnen	55%	50%
Biodiesel aus Palmöl (offenes Abwasserbecken) 32 %	36%	19%
Biodiesel aus Palmöl (Verarbeitung mit Methanbindung an der Ölmühle)	51%	45%

	iodiesel au Itspeiseöl	us 88%	84%		
B aı ti	·	us 84% en	78%		
Н	ydriertes Rapsöl	51%	47%		
	ydriertes onnenblumenöl	58%	54%		
Н	ydriertes Sojaöl	55%	51%		
(0	ydriertes Palm offenes bwasserbecken)	öl 34%	22%		
(\ M	ydriertes Palm /erarbeitung m lethanbindung a er Ölmühle)		49%		
	ydriertes Itspeiseöl	87%	83%		
	ydrierte tierisch	ne 83%	77%		
R	eines Rapsöl	59%	57%		
	eines onnenblumenöl	65%	64%		
R	eines Sojaöl	63%	61%		
(0	eines Palm offenes bwasserbecken)	öl 40%	30%		
(\ M		öl 59% nit n	57%		
(\ M	eines Palm /erarbeitung m lethanbindung a er Ölmühle)		57%		
R	eines Altspeiseöl	98%	98%		
В	IOMETHAN FÜR D	EN VERKEHRSSEKTOR	(*1)		
	iomethan-	Technologische	= :	Standardwerte für die	
р	roduktionssystem	Optionen	· ·	Minderung von Treibhausgasemissionen	
G	ülle	Offenes Gärrückstands- lager, keine Abgasverbrennung	117 %	72 %	
G la	iffenes ärrückstands- iger, bgasverbrennung	133 %	94 %		
G ke	eschlossenes ärrückstandslage eine bgasverbrennung		179 %		
G	eschlossenes ärrückstandslage bgasverbrennung		202 %		
	lais, gesamt flanze	e Offenes Gärrückstands- lager, keine Abgasverbrennung		17 %	

Offenes Gärrückstands- lager, Abgasverbrennung	51 %	39 %			
Geschlossenes Gärrückstandslager, keine Abgasverbrennung	52 %	41 %			
Geschlossenes Gärrückstandslager, Abgasverbrennung	68 %	63 %			
Bioabfall	Offenes Gärrückstands- lager, keine Abgasverbrennung		20 %		
Offenes Gärrückstands- lager, Abgasverbrennung	59 %	42 %			
Geschlossenes Gärrückstandslager, keine Abgasverbrennung	70 %	58 %			
Geschlossenes Gärrückstandslager, Abgasverbrennung (*1)	86 %	80 %			
Die Treibhausgasein	-		en sich ausschließlich a nnstoffe im Verkehrsse	•	
(*) Standardwerte für	KWK-Verfahren gelte	en nur, wenn	die gesamte Prozesswa	ärme durch KWK erze	ugt wird
Europäischen Parlam	ents und des Rates	(1) als Mate	nprodukten, die in de erial der Kategorie 1 b chung als Teil der Tierk	zw. 2 eingestuft wer	rden; in diesem Fall
BIOMETHAN — VERM	ISCHUNG VON MIST	GÜLLE UND	MAIS (*1)		
Biomethan-produktio system	ns- Technologisch	ne Optionen	Typische Werte Minderung Treibhausgasemission	für dieStandardwe vonMinderung nen Treibhausg	
Mist/Gülle — Mais	Offenes		62 %	35 %	
80 % — 20 %	Gärrückstand Abgasverbrer	•	ne		
Offenes Gärrückstandslager, Abgasverbrennung (2	78 %		57 %		
Geschlossenes Gärrückstandslager, Abgasverbrennung	97 % keine		86 %		

108 %

53 %

51 %

71 %

94 %

29 %

Geschlossenes

70 % — 30 %

Offenes

Gärrückstandslager, Abgasverbrennung Mist/Gülle — Mais

Gärrückstandslager, Abgasverbrennung

Gärrückstandslager, keine Abgasverbrennung

Geschlossenes

Geschlossenes Gärrückstandslager, Abgasverbrennung 113 %

Offenes

69 %

83 %

99 %

Gärrückstandslager, keine

Abgasverbrennung

Mist/Gülle — Mais 60 % – 40 %	Offenes Gärrückstandslager, Abgasverbrennung	48 % keine	25 %	
Offenes Gärrückstandslager, Abgasverbrennung	64 %	48 %		
Geschlossenes Gärrückstandslager, Abgasverbrennung	74 % keine	62 %		
Geschlossenes Gärrückstandslager, Abgasverbrennung	90 %	84 %		

(*1)

Die Treibhausgaseinsparungen für Biomethan beziehen sich ausschließlich auf komprimiertes Biomethan gegenüber dem Komparator für Fossilbrennstoffe im Verkehrssektor in Höhe von 94 gCO2eq/MJ.

(1)

Diese Kategorie umfasst die folgenden technologischen Kategorien zur Aufbereitung von Biogas zu Biomethan: Druckwechsel-Adsorption (Pressure Swing Adsorption — PSA), Druckwasserwäsche (Pressurised Water Scrubbing — PWS), Membrantrenntechnik, kryogene Trennung und physikalische Absorption mit einem organischen Lösungsmittel (Organic Physical Scrubbing — OPS). Dies schließt die Emission von 0,03 MJ CH4/MJ Biomethan für die Emission von Methan in den Abgasen ein.

(2

Diese Kategorie umfasst die folgenden technologischen Kategorien zur Aufbereitung von Biogas zu Biomethan: Druckwasserwäsche (Pressurised Water Scrubbing — PWS), sofern das Wasser aufbereitet wird, Druckwechsel-Adsorption (Pressure Swing Adsorption — PSA), chemische Absorption (Chemical Scrubbing), physikalische Absorption mit einem organischen Lösungsmittel (Organic Physical Scrubbing — OPS), Membrantrenntechnik und kryogene Trennung. Für diese Kategorie werden keine Methanemissionen berücksichtigt (das Methan im Abgas verbrennt gegebenenfalls).

1. B.

Herstellungsweg des Biokraftstoffs	Typische Werte für die Minderung von Treibhausgasemissionen	Standardwerte für die Minderung von Treibhausgasemissionen
Ethanol aus Weizenstroh	85%	83%
Fischer-Tropsch-Diesel aus Abfallholz in Einzelanlage	83%	83%
Fischer-Tropsch-Diesel aus Kulturholz in Einzelanlage	82%	82%
Fischer-Tropsch-Ottokraftstoff aus Abfallholz in Einzelanlage	83%	83%
Dimethylether (DME) aus Abfallholz in Einzelanlage	84%	84%
DME aus Kulturholz in Einzelanlage	83%	83%
Methanol aus Abfallholz in Einzelanlage	84%	84%
Methanol aus Kulturholz in Einzelanlage	83%	83%
Fischer-Tropsch-Diesel aus der Vergasung von Schwarzlauge, integriert in Zellstofffabrik	89%	89%
Fischer-Tropsch-Ottokraftstoff aus der Vergasung von Schwarzlauge, integriert in Zellstofffabrik	89%	89%
Dimethylether (DME) aus der Vergasung von Schwarzlauge, integriert in Zellstofffabrik	89%	89%
Methanol aus der Vergasung von Schwarzlauge, integriert in Zellstofffabrik	89%	89%
Methyl-Tertiär-Butylether (MTBE), Anteil	Wie beim Herstellungsweg für	Wie beim Herstellungsweg für

C. Methodologie

aus erneuerbaren Quellen

1. 1.

1. a)Treibhausgasemissionen bei der Produktion und Verwendung von Biokraftstoffen werden wie folgt

Methanol

 $E = \mathbf{e}_{ec} + \mathbf{e}_l + \mathbf{e}_p + \mathbf{e}_{td} + \mathbf{e}_u - \mathbf{e}_{sc}\alpha - \textit{eccs} - \textit{eccr}$

wobei

- E = Gesamtemissionen bei der Verwendung des Kraftstoffs
- eec = Emissionen bei der Gewinnung oder beim Anbau der Rohstoffe;
- el = auf das Jahr umgerechnete Emissionen aufgrund von Kohlenstoffbestandsänderungen infolge von Landnutzungsänderungen;
- ep = Emissionen bei der Verarbeitung;
- etd = Emissionen bei Transport und Vertrieb;
- eu = Emissionen bei der Nutzung des Kraftstoffs;
- esca = Emissionseinsparung durch Akkumulierung von Kohlenstoff im Boden infolge besserer landwirtschaftlicher Bewirtschaftungspraktiken;
- eccs = Emissionseinsparung durch Abscheidung und geologische Speicherung von Kohlendioxid;
- eccr =.Emissionseinsparung durch Abscheidung und Ersetzung von Kohlendioxid

Die mit der Herstellung der Anlagen und Ausrüstungen verbundenen Emissionen werden nicht berücksichtigt.

1. b)

1. 2.Die durch Biokraftstoffe oder Biomethan verursachten Treibhausgasemissionen E werden in CO2-Äquivalent in g/MJ (Gramm CO2-Äquivalent pro Megajoule Kraftstoff) angegeben.

Werden Treibhausgasemissionen durch die Gewinnung oder den Anbau von Rohstoffen (æc) als Einheit gCO2eq/Tonne Trockenrohstoff angegeben, wird die Umwandlung in gCO2eq/MJ (Gramm CO2-Äquivalent pro Megajoule Brennstoff) wie folgt berechnet(1)

$$\begin{aligned} &\mathbf{e}_{ee} Brennstoff_{e} \begin{bmatrix} gCO_{2}eq \\ MIfuel \end{bmatrix}_{ee} = \frac{\mathbf{e}_{ee} Robstoff_{e}}{LHV_{e}} \underbrace{\frac{RCO_{ees}}{MIfuel}}_{LHV_{e}} \cdot \text{Faktor Brennstoff Robstoff_{e}} \cdot \text{Allokationsfaktor Brennstoff_{e}} \\ &Wobei: \\ &Allokationsfaktor Brennstoff_{e} = \begin{bmatrix} Energie in Brennstoff \\ Energie in Brennstoff \end{bmatrix} \end{aligned}$$

 $Faktor\,Brennstoff\,Rohstoff_{a} = [Anteil\,von\,MJ\,Rohstoff, der\,zur\,Erzeugung\,von\,1\,MJ\,Brennstoff\,erforderlich\,ist]$

Die Emissionen pro Tonne Trockenrohstoff werden wie folgt berechnet:

$$e_{ec} Rohstoff_a \left[\frac{gCO_2 eq}{t_{dry}} \right] = \frac{e_{ec} Rohstoff_a \left[\frac{gCO_2 eq}{t_{feucht}} \right]}{(1 - Feuchtigkeitsgehalt)}$$

- 1. (1)Die Formel, mit der die Treibhausgasemissionen durch die Gewinnung oder den Anbau von Rohstoffen eec berechnet werden, beschreibt Fälle, in denen Rohstoffe in einem Schritt in Biokraftstoffe umgewandelt werden. Bei komplizierteren Versorgungsketten sind Anpassungen notwendig, damit auch die Treibhausgasemissionen eec berechnet werden, die durch die Gewinnung oder den Anbau von Rohstoffen für Zwischenprodukte verursacht werden.
- 3.Die durch die Verwendung von Biokraftstoffen oder Biomethan erzielte Einsparung bei den Treibhausgasemissionen wird wie folgt berechnet:EINSPARUNG = (EF(t) – EB)/EF(t)dabei sind:EB = Gesamtemissionen bei der Verwendung des Biokraftstoffs;

 ${\sf EF(t) = Gesamtemissionen \ des \ Komparators \ f\"{u}r \ Fossile \ Kraftstoffe}.$

- 4.Die für die unter Nummer 1 genannten Zwecke berücksichtigten Treibhausgase sind CΩ, N2O und CH4. Zur Berechnung der CO2-Äquivalenz werden diese Gase wie folgt gewichtet:
- CO2: 1
- N2O: 296
- CH4: 25
- 1. 5.
 - 1. 6.Für die Zwecke der in Nummer 1 Buchstabe a genannten Berechnungen werden Treibhausgasemissionseinsparungen infolge besserer landwirtschaftlicher Bewirtschaftungspraktiken (esca), wie infolge der Umstellung auf eine reduzierte Bodenbearbeitung oder eine Nullbodenbearbeitung, verbesserter Fruchtfolgen, der Nutzung von Deckpflanzen, einschließlich Bewirtschaftung der Ernterückstände, sowie des Einsatzes natürlicher Bodenverbesserer (z. B. Kompost, Rückstände der Mist-/Güllevergärung), nur dann berücksichtigt, wenn zuverlässige und überprüfbare Nachweise dafür vorgelegt werden, dass mehr Kohlenstoff im Boden gebunden wurde, oder wenn vernünftigerweise davon auszugehen ist, dass dies in dem Zeitraum, in dem die betreffenden Rohstoffe angebaut wurden, der Fall war; dabei ist gleichzeitig jenen Emissionen Rechnung zu tragen, die aufgrund des vermehrten Einsatzes von Dünger und Pflanzenschutzmitteln bei derartigen Praktiken entstehen (1).
 - 7. Die auf Jahresbasis umgerechneten Emissionen aus Kohlenstoffbestandsänderungen infolge von Landnutzungsänderungen (el) werden durch gleichmäßige Verteilung der Gesamtemissionen über 20 Jahre berechnet. Diese Emissionen werden wie folgt berechnet:
 ej = (CSR - CSA) × 3.664 × 1/20 × 1/P - eB(2)

dabei sind

el = auf das Jahr umgerechnete Treibhausgasemissionen aus Kohlenstoffbestandsänderungen infolge von Landnutzungsänderungen (gemessen als Masse (Gramm) an CO2-Äquivalent pro Energieeinheit (Megajoule) Biokraftstoff); "Kulturflächen" (3) und "Dauerkulturen" (4) sind als eine einzige Landnutzungsart zu betrachten;

- 1. (1) Bei einem solchen Nachweis kann es sich um Messungen des Kohlenstoffs im Boden handeln, beispielsweise in Form einer ersten Messung vor dem Anbau und anschließender regelmäßiger Messungen im Abstand von mehreren Jahren. In diesem Fall würde für den Anstieg des Bodenkohlenstoffs, solange der zweite Messwert noch nicht vorliegt, anhand repräsentativer Versuche oder Bodenmodelle ein Schätzwert ermittelt. Ab der zweiten Messung würden die Messwerte als Grundlage dienen, um zu ermitteln, ob und in welchem Maß der Bodenkohlenstoff steigt.
- (2) Der durch Division des Molekulargewichts von CO2 (44,010 g/mol) durch das Molekulargewicht von Kohlenstoff (12,011 g/mol) gewonnene Quotient ist gleich 3,664.
- 3. (3) Kulturflächen im Sinn der Definition des IPCC
- 4. (4) Dauerkulturen sind definiert als mehrjährige Kulturpflanzen, deren Stiel normalerweise nicht jährlich geerntet wird (z. B. Niederwald mit Kurzumtrieb und Ölpalmen).
 - 8.Der Bonus von 29 CO2-Äquivalent in g/MJ wird gewährt, wenn der Nachweis erbracht wird. dass die betreffende Fläche
 - a)im Januar 2008 nicht landwirtschaftlich oder zu einem anderen Zweck genutzt wurde und
 - b)aus stark degradierten Flächen einschließlich früherer landwirtschaftlicher Nutzflächen besteht.

Der Bonus von 29 CO2-Äquivalent in g/MJ gilt für einen Zeitraum von bis zu 20 Jahren ab dem Zeitpunkt der Umwandlung der Fläche in eine landwirtschaftliche Nutzfläche, sofern ein kontinuierlicher Anstieg des Kohlenstoffbestands und ein nennenswerter Rückgang der Erosion auf unter Buchstabe b fallenden Flächen gewährleistet werden

- 9."Stark degradierte Flächen" sind Flächen, die während eines längeren Zeitraums entweder in hohem Maße versalzt wurden oder die einen besonders niedrigen Gehalt an organischen Stoffen aufweisen und stark erodiert sind;
- 3. 10.Für die Zwecke dieser Verordnung erfolgt die Berechnung des Bodenkohlenstoffbestands auf der Grundlage der von der Kommission auf der Basis von Band 4 der IPPC-Leitlinien für nationale Treibhausgasinventare aus dem Jahr 2006 sowie im Einklang mit der Verordnung (EU) Nr. 525/2013 und der Verordnung (EU) 2018/841 des Europäischen Parlaments und des Rates vom 30. Mai 2018 über die Einbeziehung der Emissionen und des Abbaus von Treibhausgasen aus Landnutzung, Landnutzungsänderungen und Forstwirtschaft (LULUCF) in den Rahmen für die Klimaund Energiepolitik bis 2030 und zur Änderung der Verordnung (EU) Nr. 525/2013 erstellten Leitlinien für die Berechnung des Bodenkohlenstoffbestands (Beschluss der Kommission 2010/335/EU über Leitlinien für die Berechnung des Kohlenstoffbestands im Boden für die Zwecke des Anhangs V der Richtlinie 2009/28/EG, ABI. Nr. L 151 vom 17.06.2010 S.19).
- 4. 11.Die Emissionen bei der Verarbeitung (ep) schließen die Emissionen bei der Verarbeitung selbst, aus Abfällen und Leckagen sowie bei der Herstellung der zur Verarbeitung verwendeten Chemikalien oder sonstigen Produkte ein, einschließlich der CO2-Emissionen, die dem Kohlenstoffgehalt fossiler Inputs entsprechen, unabhängig davon, ob sie bei dem Prozess tatsächlich verbrannt werden. Bei der Berücksichtigung des Verbrauchs an nicht in der Anlage zur Kraftstoffherstellung erzeugter Elektrizität wird angenommen, dass die Treibhausgasemissionsintensität bei Erzeugung und Verteilung dieser Elektrizität der durchschnittlichen Emissionsintensität bei der Produktion und Verteilung von Elektrizität in einer bestimmten Region entspricht. Abweichend von dieser Regel gilt: Die Produzenten können für die von einer einzelnen Elektrizitätserzeugungsanlage erzeugte Elektrizität einen Durchschnittswert verwenden, falls diese Anlage nicht an das Elektrizitätsnetz angeschlossen ist. Die Emissionen bei der Verarbeitung schließen gegebenenfalls Emissionen bei der Trocknung von Zwischenprodukten und -materialien ein.
- 5. 12.Die Emissionen beim Transport und Vertrieb (etd) schließen die beim Transport und der Lagerung von Rohstoffen und Halbfertigerzeugnissen sowie bei der Lagerung und dem Vertrieb von Fertigerzeugnissen anfallenden Emissionen ein. Die Emissionen beim Transport und Vertrieb, die unter Nummer 5 berücksichtigt werden, fallen nicht unter diese Nummer.
- 6. 13.Die CO2 Emissionen bei der Nutzung des Kraftstoffs (eu) werden für Biokraftstoffe und Biomethan mit null angesetzt. Die Emissionen von anderen Treibhausgasen als CO2 (CH2 und N2O) bei der Nutzung von Biokraftstoffen werden in den eu-Faktor einbezogen.
- 7. 14.Die Emissionseinsparung durch Abscheidung und geologische Speicherung von Kohlendioxid (eccs), die nicht bereits in ep berücksichtigt wurde, wird auf die durch Abscheidung und Sequestrierung von emittiertem CO2 vermiedenen Emissionen begrenzt, die unmittelbar mit der Gewinnung, dem Transport, der Verarbeitung und dem Vertrieb von Kraftstoff verbunden sind, sofern die Speicherung im Einklang mit der Richtlinie 2009/31/EG über die geologische Speicherung von Kohlendioxid erfolgt.
- 8. 15.Die Emissionseinsparung durch CO2-Abscheidung und -ersetzung (eccr) steht in

- unmittelbarer Verbindung mit der Produktion des Biokraftstoffs oder Biomethans, dem sie zugeordnet wird, und wird begrenzt auf die durch Abscheidung von CO2 vermiedenen Emissionen, wobei der Kohlenstoff aus Biomasse stammt und bei der Produktion von Handelsprodukten und bei Dienstleistungen anstelle des CO2 fossilen Ursprungs verwendet wird.
- 9. 16.Erzeugt eine Kraft-Wärme-Kopplungsanlage, die Wärme und/oder Elektrizität für ein Kraftstoffproduktionsverfahren liefert, für das Emissionen berechnet werden, überschüssige Elektrizität und/oder Nutzwärme, werden die Treibhausgasemissionen entsprechend der Temperatur der Wärme (die deren Nutzen widerspiegelt) auf die Elektrizität und die Nutzwärme aufgeteilt. Der Nutzanteil der Wärme ergibt sich durch Multiplikation ihres Energiegehalts mit dem Carnot'schen Wirkungsgrad Ch, der wie folgt berechnet wird:

$$C_h = \frac{T_h - T_0}{T_h}$$

wohei:

Th =Temperatur, gemessen als absolute Temperatur (Kelvin) der Nutzwärme am LieferortT0 =Umgebungstemperatur, festgelegt auf 273,15 Kelvin (0 °C)Wenn die überschüssige Wärme zur Beheizung von Gebäuden ausgeführt wird, kann Ch für eine Temperatur unter 150 °C (423,15 Kelvin) alternativ wie folgt definiert werden:Ch =Carnot'scher Wirkungsgrad für Wärme bei 150 °C (423,15 Kelvin) = 0,3546Für die Zwecke dieser Berechnung ist der tatsächliche Wirkungsgrad zu verwenden, der als jährlich produzierte mechanische Energie, Elektrizität bzw. Wärme dividiert durch die jährlich eingesetzte Energie definiert wird.Für die Zwecke dieser Berechnung bezeichnet der Begriff

- a) "Kraft-Wärme-Kopplung" die gleichzeitige Erzeugung thermischer Energie und elektrischer und/oder mechanischer Energie in einem Prozess;
- b),,Nutzwärme" die in einem KWK-Prozess zur Befriedigung eines wirtschaftlich vertretbaren Wärme- oder Kältebedarfs erzeugte Wärme;
- c), wirtschaftlich vertretbarer Bedarf" den Bedarf, der die benötigte Wärme- oder Kälteleistung nicht überschreitet und der sonst zu Marktbedingungen gedeckt würde.
- 1. 17.Werden bei einem Kraftstoffproduktionsverfahren neben dem Kraftstoff, für den die Emissionen berechnet werden, weitere Erzeugnisse ("Nebenerzeugnisse") produziert, so werden die anfallenden Treibhausgasemissionen zwischen dem Kraftstoff oder dessen Zwischenerzeugnis und den Nebenerzeugnissen nach Maßgabe ihres Energiegehalts (der bei anderen Nebenerzeugnissen als Elektrizität durch den unteren Heizwert bestimmt wird) aufgeteilt. Die Treibhausgasintensität überschüssiger Nutzwärme und Elektrizität entspricht der Treibhausgasintensität der für ein Kraftstoffherstellungsverfahren gelieferten Wärme oder Elektrizität; sie wird durch Berechnung der Treibhausgasintensität aller Inputs in die Kraft-Wärme-Kopplungs-, konventionelle oder sonstige Anlage, die Wärme oder Elektrizität für ein Kraftstoffproduktionsverfahren liefert, und der Emissionen der betreffenden Anlage, einschließlich der Rohstoffe sowie CH4- und N2O-Emissionen, bestimmt. Im Falle der Kraft-Wärme-Kopplung erfolgt die Berechnung entsprechend Nummer 16.
- 2. 18. Für die Zwecke der Berechnung nach Nummer 17 sind die aufzuteilenden Emissionen eec + el + esca + die Anteile von ep, etd eccs und eccr, die bis einschließlich zu dem Verfahrensschritt anfallen, bei dem ein Nebenprodukt erzeugt wird. Wurden in einem früheren Verfahrensschritt Emissionen Nebenprodukten zugewiesen, so wird für diesen Zweck anstelle der Gesamtemissionen der Bruchteil dieser Emissionen verwendet, der im letzten Verfahrensschritt dem Zwischenerzeugnis zugeordnet wird.Im Falle von Biokraftstoffen und Biomethan werden sämtliche Nebenerzeugnisse, für die Zwecke der Berechnung berücksichtigt, Abfällen und Reststoffen werden keine Emissionen zugeordnet. Für die Zwecke der Berechnung wird der Energiegehalt von Nebenprodukten mit negativem Energiegehalt mit null angesetzt. Die Lebenszyklus-Treibhausgasemissionen von Abfällen und Reststoffen, einschließlich Baumspitzen und Ästen, Stroh,, Hülsen, Maiskolben und Nussschalen sowie Reststoffen aus der Verarbeitung einschließlich Rohglycerin (nicht raffiniertes Glycerin) und Bagasse werden bis zur Sammlung dieser Materialien auf null angesetzt, unabhängig davon, ob sie vor der Umwandlung ins Endprodukt zu Zwischenprodukten verarbeitet werden. Bei Kraftstoffen, die in anderen Raffinerien als einer Kombination von Verarbeitungsbetrieben mit konventionellen oder Kraft-Wärme-Kopplungsanlagen, die dem Verarbeitungsbetrieb Wärme und/oder Elektrizität liefern, hergestellt werden, ist die Analyseeinheit für die Zwecke der Berechnung nach Nummer 17 die Raffinerie.
- 19.Bei Biokraftstoffen und Biomethan ist für die Zwecke der Berechnung nach Nummer 3 die fossile Vergleichsgröße EF(t) 94 gCO2eq/MJ.
- D. 1. Disaggregierte Standardwerte für Biokraftstoffe

Disaggregierte Standardwerte für den Anbau: "eec" gemäß Definition in Teil C dieses Anhangs einschließlich N2O- Bodenemissionen

Herstellungsweg der Typische Standardtreibhausgasemissionen
Biokraftstoffe Treibhausgasemissionen
(CO2-Äquivalent in g/MJ)

Ethanol aus Zuckerrüben 9,6 9,6

Ethanol aus Mais	25,5	25,5
Ethanol aus anderen Getreiden, ohne Mais	27	27
Ethanol aus Zuckerrohr	17,1	17,1
ETBE, Anteil aus erneuerbaren Quellen	Wie beim Herstellungsweg für Ethanol	
TAEE, Anteil aus erneuerbaren Quellen	Wie beim Herstellungsweg für Ethanol	
Biodiesel aus Raps	32	32
Biodiesel aus Sonnenblumen	26,1	26,1
Biodiesel aus Sojabohnen	21,2	21,2
Biodiesel aus Palmöl	26,0	26,0
Biodiesel aus Altspeiseöl	0	0
Biodiesel aus ausgelassenen tierischen Fetten(**)	0	0
Hydriertes Rapsöl	33,4	33,4
Hydriertes Sonnenblumenöl	26,9	26,9
Hydriertes Sojaöl	22,1	22,1
Hydriertes Palmöl	27,3	27,3
Hydriertes Altspeiseöl	0	0
Hydriertes Tierische Fette (**)	0	0
Reines Rapsöl	33,4	33,4
Reines Sonnenblumenöl	27,2	27,2
Reines Sojaöl	22,2	22,2
Reines Rapsöl	27,1	27,1
Reines Palmöl	0	0
(++) C: f:: D:-		

(**) Gilt nur für Biokraftstoffe aus tierischen Nebenprodukten, die in der Verordnung (EG)
Nr. 1069/2009 als Material der Kategorie 1 bzw. 2 eingestuft werden; in diesem Fall werden
Emissionen im Zusammenhang mit der Entseuchung als Teil der Tierkörperverwertung nicht
berücksichtigt.

Disaggregierte Standardwerte für den Anbau: "eec" — ausschließlich für N2O-Bodenemissionen (diese sind bereits in den disaggregierten Werten in Tabelle "eec" für Emissionen aus dem Anbau enthalten) Herstellungsweg der Biokraftstoffe

18,0

der Treibhaus gas emission en Treibhaus gas emission en

	und— typischer Wert	— Standardwert		
flüssigen Biobrennst	offe (gCO2eq/MJ)	(gCO2eq/MJ)		
Ethanol aus Zuckerr	üben4,9	4,9		
Ethanol aus Mais	13,7	13,7		
Ethanol aus and Getreiden, ohne Mai	·	14,1		
Ethanol aus Zuckerre	ohr 2,1	2,1		
ETBE, Anteil ausWie beim Produktionsweg für Ethanol erneuerbaren Quellen				
TAEE, Anteil ausWie beim Produktionsweg für Ethanol erneuerbaren Quellen				
Biodiesel aus Raps	17,6	17,6		
Biodiesel Sonnenblumen	aus12,2	12,2		
Biodiesel Sojabohnen	aus13,4	13,4		
Biodiesel aus Palmö	16,5	16,5		
Biodiesel aus Altspeiseöl 0 0				
Biodiesel ausgelassenen tieris Fetten (*1)	aus0 chen	0		

18,0

Produktionsweg

Hydriertes Rapsöl

12,5	12,5
13,7	
	13,7
16,9	16,9
0	0
e0	0
17,6	17,6
12,2	12,2
13,4	13,4
16,5	16,5
0	0
069/2009 als Materia esem Fall werden Emi g als Teil der Ti werte für die Verarbeit	ung: "ep" gemäß Definition in Teil C dieses Anhangs
=	reibhausgasemissionen – Standardwert
**	gCO2eq/MJ)
8 2	26,3
1	3,6
2 1	8,5
1	0,6
4 3	18,3
	e0 17,6 12,2 13,4 16,5 0 Offe aus tierischen No. 069/2009 als Materia esem Fall werden Emi g als Teil der Ti werte für die Verarbeit tibhausgasemissionenT typischer Wert O2eq/MJ) (0 8 2

Ethanol Zuckerrüben	aus15,7 (mit	22,0
Biogas	aus	
Schlempe, Braunkohle	als	
Prozessbrenns		
in KWK-Anlage Ethanol aus		29,1
(Erdgas	als	
Prozessbrenns in konvention		
Anlage)		
Ethanol aus (Erdgas	Mais14,8 als	20,8
Prozessbrenns	toff	
in KWK-Anlage Ethanol aus		40,1
(Braunkohle	als	40,1
Prozessbrenns in KWK-Anlage		
Ethanol aus		2,6
(forstwirtschaft Reststoffe	tliche als	
Prozessbrenns		
in KWK-Anlage		
Ethanol anderen Getre	aus21,0 iden,	29,3
ohne Mais (Er als	dgas	
Prozessbrenns	toff	
in konventior Anlage)	neller	
Ethanol	aus15,1	21,1
anderen Getre ohne Mais (Er		
als		
Prozessbrenns in KWK-Anlage		
Ethanol	aus30,3	42,5
anderen Getre ohne	iden, Mais	
(Braunkohle	als	
Prozessbrenns in KWK-Anlage		
Ethanol	aus1,5	2,2
anderen Getre ohne	iden, Mais	
(forstwirtschaft		
Reststoffe Prozessbrenns	als toff	
in KWK-Anlage		
Ethanol Zuckerrohr	aus1,3	1,8
	ausWie beim Produktionsv	eg für Ethanol
erneuerbaren Quellen		
	ausWie beim Produktionsw	veg für Ethanol
erneuerbaren Quellen		
Biodiesel aus R	aps 11,7	16,3
Biodiesel	aus11,8	16,5
Sonnenblumer Biodiesel		16.0
Sojabohnen	aus12,1	16,9

Biodiesel aus30,4 Palmöl (offenes	42,6
Abwasserbecken) Biodiesel aus13,2	18,5
Palmöl (Verarbeitung mit Methanbindung an der Ölmühle)	
Biodiesel aus9,3 Altspeiseöl	13,0
Biodiesel aus13,6 ausgelassenen tierischen Fetten (*2)	19,1
Hydriertes Rapsöl 10,7	15,0
Hydriertes 10,5 Sonnenblumenöl	14,7
Hydriertes Sojaöl 10,9	15,2
Hydriertes Palmöl27,8 (offenes	38,9
Abwasserbecken) Hydriertes Palmöl9,7 (Verarbeitung mit Methanbindung an	13,6
der Ölmühle)	
Hydriertes 10,2 Altspeiseöl	14,3
Hydrierte tierische14,5 Fette (*2)	20,3
Reines Rapsöl 3,7	5,2
Reines 3,8 Sonnenblumenöl	5,4
Reines Sojaöl 4,2	5,9
Reines Palmöl22,6 (offenes	31,7
Abwasserbecken)	
Reines Palmöl4,7 (Verarbeitung mit Methanbindung an	6,5
der Ölmühle)	
Reines Altspeiseöl 0,6	0,8
(*1)	
Standardwerte für KWK-Verfahren gelten Prozesswärme durch KWK erzeugt wird.	nur, wenn die gesamte
(*2)	
Hinweis: Gilt nur für Biokraftstoffe aus tie die in der Verordnung (EG) Nr. 1069/2009 a bzw. 2 eingestuft werden; in diesem Fa Zusammenhang mit der Entseucl Tierkörperverwertung nicht berücksichtigt	ls Material der Kategorie 1 Il werden Emissionen im
Disaggregierte Standardwerte ausschließlic disaggregierten Werten in Tabelle "ep" für Er	h für die Ölgewinnung (diese sind bereits in den
Produktionsweg derTreibhausgasemissione Biokraftstoffe und— typischer Wert	_
flüssigen (gCO2eq/MJ) Biobrennstoffe	(gCO2eq/MJ)
Biodiesel aus Raps 3,0	4,2
Biodiesel aus2,9 Sonnenblumen	4,0

4,4

Biodiesel aus3,2

Sojabohnen

Biodiesel aus Palmöl20,9 (offenes Abwasserbecken)	29,2
Biodiesel aus Palmöl3,7 (Verarbeitung mit Methanbindung an der Ölmühle)	5,1
Biodiesel aus0 Altspeiseöl	0
Biodiesel aus4,3 ausgelassenen tierischen Fetten (*1)	6,1
Hydriertes Rapsöl 3,1	4,4
Hydriertes 3,0 Sonnenblumenöl	4,1
Hydriertes Sojaöl 3,3	4,6
Reines Palmöl21,9 (offenes Abwasserbecken)	30,7
Hydriertes Palmöl3,8 (Verarbeitung mit Methanbindung an der Ölmühle)	5,4
Hydriertes 0 Altspeiseöl	0
Hydrierte tierische4,3 Fette (*1)	6,0
Reines Rapsöl 3,1	4,4
Reines 3,0 Sonnenblumenöl	4,2
Reines Sojaöl 3,4	4,7
Reines Palmöl21,8 (offenes Abwasserbecken)	30,5
Reines Palmöl3,8 (Verarbeitung mit Methanbindung an der Ölmühle)	5,3
Reines Altspeiseöl 0	0
(*1)	
Hinweis: Gilt nur für Biokraftstoffe aus t	ierischen Nebenprodukten, die
in der Verordnung (EG) Nr. 1069/2009 al 2 eingestuft werden; in diesem l	-

Hinweis: Gilt nur für Biokraftstoffe aus tierischen Nebenprodukten, die in der Verordnung (EG) Nr. 1069/2009 als Material der Kategorie 1 bzw.
2 eingestuft werden; in diesem Fall werden Emissionen im Zusammenhang mit der Entseuchung als Teil der Tierkörperverwertung nicht berücksichtigt.

Disaggregierte Standardwerte für den Transport und Vertrieb: "etd" gemäß Definition in Teil C dieses Anhangs

Ethanol aus2,3 2,3

Zuckerrüben (ohne Biogas aus Schlempe, Erdgas als

Prozessbrennstoff in konventioneller

Anlage)

Ethanol aus2,3 Zuckerrüben (mit Biogas aus Schlempe, Erdgas als Prozessbrennstoff in konventioneller Anlage)	2,3	
Ethanol aus2,3 Zuckerrüben (ohne Biogas aus Schlempe, Erdgas als Prozessbrennstoff in KWK-Anlage (*1))	2,3	
Ethanol aus2,3 Zuckerrüben (mit Biogas aus Schlempe, Erdgas als Prozessbrennstoff in KWK-Anlage (*1))	2,3	
Ethanol aus2,3 Zuckerrüben (ohne Biogas aus Schlempe, Braunkohle als Prozessbrennstoff in KWK-Anlage (*1))	2,3	
Ethanol aus2,3 Zuckerrüben (mit Biogas aus Schlempe, Braunkohle als Prozessbrennstoff in KWK-Anlage (*1))	2,3	
Ethanol aus Mais2,2 (Erdgas als Prozessbrennstoff in KWK-Anlage (*1))	2,2	
Ethanol aus Mais2,2 (Erdgas als Prozessbrennstoff in konventioneller Anlage)	2,2	
Ethanol aus Mais2,2 (Braunkohle als Prozessbrennstoff in KWK-Anlage (*1))	2,2	
Ethanol aus Mais2,2 (forstwirtschaftliche Reststoffe als Prozessbrennstoff in KWK-Anlage (*1))	2,2	
Ethanol aus2,2 anderen Getreiden, ohne Mais (Erdgas als Prozessbrennstoff in konventioneller Anlage)	2,2	
Ethanol aus2,2 anderen Getreiden, ohne Mais (Erdgas als Prozessbrennstoff in KWK-Anlage (*1))	2,2	

Ethanol anderen Getre ohne (Braunkohle Prozessbrenns in KWK-Anlage	Mais als toff	2,2
Ethanol anderen Getre ohne (forstwirtschaft Reststoffe Prozessbrenns in KWK-Anlage	Mais diche als toff	2,2
Ethanol Zuckerrohr	aus9,7	9,7
ETBE, Anteil erneuerbaren Quellen	ausWie beim Produktionsv	veg für Ethanol
TAEE, Anteil erneuerbaren Quellen	ausWie beim Produktionsv	veg für Ethanol
Biodiesel aus R	aps 1,8	1,8
Biodiesel Sonnenblumen	aus2,1	2,1
Biodiesel Sojabohnen	aus8,9	8,9
Biodiesel	aus6,9 enes en)	6,9
Biodiesel Palmöl (Verarbeitung Methanbindun der Ölmühle)		6,9
Biodiesel Altspeiseöl	aus1,9	1,9
Biodiesel ausgelassenen tierischen Fetten (*2)	aus1,6	1,6
Hydriertes Rap	söl 1,7	1,7
Hydriertes Sonnenblumen	2,0 nöl	2,0
Hydriertes Soja	iöl 9,2	9,2
Reines Pa (offenes Abwasserbecke	almöl7,0 en)	7,0
Hydriertes Pa (Verarbeitung Methanbindun der Ölmühle)	mit	7,0
Hydriertes Altspeiseöl	1,7	1,7
Hydrierte tier Fette (*2)	ische1,5	1,5
Reines Rapsöl	1,4	1,4
Reines Sonnenblumen	1,7 nöl	1,7
Reines Sojaöl	8,8	8,8
-	almöl6,7	6,7

Reines Palmöl6,7 6,7
(Verarbeitung mit
Methanbindung an der Ölmühle)
Reines Altspeiseöl 1,4 1,4
(*1)

Standardwerte für KWK-Verfahren gelten nur, wenn die gesamte Prozesswärme durch KWK erzeugt wird.

(*2)

Hinweis: Gilt nur für Biokraftstoffe aus tierischen Nebenprodukten, die in der Verordnung (EG) Nr. 1069/2009; in diesem Fall werden Emissionen im Zusammenhang mit der Entseuchung als Teil der Tierkörperverwertung nicht berücksichtigt.

Disaggregierte Standardwerte ausschließlich für den Transport und Vertrieb des fertigen Biokraftstoffs. Diese sind bereits in der Tabelle als Emissionen bei Transport und Vertrieb "etd" gemäß Definition in Teil C dieses Anhangs enthalten; die folgenden Werte können jedoch hilfreich sein, wenn ein Wirtschaftsteilnehmer die tatsächlichen Transportemissionen nur für den Transport von Kulturpflanzen oder Öl angeben will.

Biobrennstoffe

Ethanol aus1,6 1,6

Zuckerrüben (ohne Biogas aus Schlempe, Erdgas

als

Prozessbrennstoff in konventioneller

Anlage)

Ethanol aus1,6 1,6

Zuckerrüben (mit Biogas aus Schlempe, Erdgas

als

Prozessbrennstoff in konventioneller

Anlage)

Ethanol aus1,6 1,6

Zuckerrüben (ohne Biogas aus Schlempe, Erdgas

als

Prozessbrennstoff in KWK-Anlage (*1))

Ethanol aus Mais1,6 1,6

(Erdgas als Prozessbrennstoff in KWK-Anlage (*1))

Zuckerrüben (ohne

Ethanol aus1,6 1,6

Biogas aus Schlempe, Braunkohle als Prozessbrennstoff in KWK-Anlage (*1))

Ethanol aus1,6 1,6

Zuckerrüben (mit Biogas aus Schlempe, Braunkohle als Prozessbrennstoff in KWK-Anlage (*1))

Ethanol aus (Erdgas Prozessbrenns in konvention Anlage)	als toff	1,6			
Ethanol aus (Erdgas Prozessbrenns in KWK-Anlage	als toff	1,6			
Ethanol aus (Braunkohle Prozessbrenns	als toff	1,6			
in KWK-Anlage Ethanol aus (forstwirtschaft Reststoffe Prozessbrenns	Mais1,6 tliche als toff	1,6			
in KWK-Anlage Ethanol anderen Getre ohne Mais (Er als	aus1,6 iden,	1,6			
Prozessbrenns in konvention Anlage)	neller				
Ethanol anderen Getre ohne Mais (Er als Prozessbrenns	rdgas	1,6			
in KWK-Anlage	(*1))				
Ethanol anderen Getre ohne (Braunkohle Prozessbrenns in KWK-Anlage	Mais als toff	1,6			
Ethanol anderen Getre ohne (forstwirtschaft Reststoffe Prozessbrenns in KWK-Anlage	aus1,6 iden, Mais tliche als toff	1,6			
Ethanol Zuckerrohr	aus6,0	6,0			
Ethyl-Tertiär- Butylether (E Anteil aus Eth aus erneuerb Quellen	TBE),Ethanol nanol	wie beim	Produktionsweg	für	
Tertiär-Amyl-Et Ether (TAEE), A aus Ethanol erneuerbaren Quellen		wie beim	Produktionsweg	für	
Biodiesel aus R	taps 1,3	1,3			
Biodiesel Sonnenblumer	aus1,3	1,3			
Biodiesel Sojabohnen	aus1,3	1,3			
	aus1,3 fenes	1,3			
Abwasserbecke	en)				

Biodiesel aus Palmöl (Verarbeitung mit		1,3	
Methanbindung an der Ölmühle)			
Biodiesel aus Altspeiseöl	1,3	1,3	
Biodiesel aus ausgelassenen tierischen Fetten (*2)	1,3	1,3	
Hydriertes Rapsöl	1,2	1,2	
Hydriertes Sonnenblumenöl	1,2	1,2	
Hydriertes Sojaöl	1,2	1,2	
Reines Palmöl	1,2	1,2	
(offenes Abwasserbecken)			
Hydriertes Palmöl (Verarbeitung mit Methanbindung an der Ölmühle)		1,2	
Hydriertes Altspeiseöl	1,2	1,2	
Hydrierte tierische Fette (*2)	1,2	1,2	
Reines Rapsöl	0,8	0,8	
Reines Sonnenblumenöl	0,8	0,8	
Reines Sojaöl	0,8	0,8	
Reines Palmöle (offenes Abwasserbecken)	0,8	0,8	
Reines Palmöld (Verarbeitung mit Methanbindung an der Ölmühle)		0,8	
Reines Altspeiseöl	0,8	0,8	
(*1)			
Standardwerte für	KWK-Verfahren gelten	nur, wenn die gesamte	

Standardwerte für KWK-Verfahren gelten nur, wenn die gesamte Prozesswärme durch KWK erzeugt wird.

(*2)

Hinweis: Gilt nur für Biokraftstoffe aus tierischen Nebenprodukten, die in der Verordnung (EG) Nr. 1069/2009 als Material der Kategorie 1 bzw. 2 eingestuft werden; in diesem Fall werden Emissionen im Zusammenhang mit der Entseuchung als Teil der Tierkörperverwertung nicht berücksichtigt.

Insgesamt für Anbau, Verarbeitung, Transport und Vertrieb

Ethanol aus30,7 38,2

Zuckerrüben (ohne Biogas aus Schlempe, Erdgas als Prozessbrennstoff in konventioneller

Anlage)

Biogas	rrüben (mit aus	25,5
als	npe, Erdgas ssbrennstoff	
Anlage		
Biogas Schlem als Prozes	rrüben (ohne aus npe, Erdgas ssbrennstoff	30,4
Ethano	•	22,5
Biogas Schlen als	rrüben (mit aus npe, Erdgas isbrennstoff	
in KWk Ethano	(-Anlage (*1)) ol aus39,3	50,2
Zucker Biogas Schlem Braunl Prozes	rüben (ohne aus npe,	30,2
	rüben (mit aus npe,	33,9
(Erdga: Prozes	sbrennstoff nventioneller	56,8
(Erdga: Prozes	ol aus Mais42,5 s als ssbrennstoff (-Anlage (*1))	48,5
(Braun Prozes	ol aus Mais56,3 Ikohle als Isbrennstoff K-Anlage (*1))	67,8
(forstw Reststo Prozes	ol aus Mais29,5 virtschaftliche offe als visbrennstoff (-Anlage (*1))	30,3
ohne als Prozes	en Getreiden, Mais (Erdgas Isbrennstoff nventioneller	58,5
Ethanc andere ohne als Prozes		50,3

Ethanol au anderen Getreider ohne Mai (Braunkohle al Prozessbrennstoff in KWK-Anlage (*1)	is Is	71,7
Ethanol au anderen Getreider ohne Mai (forstwirtschaftlich Reststoffe al Prozessbrennstoff in KWK-Anlage (*1)	is le Is	31,4
Ethanol au Zuckerrohr	ıs28,1	28,6
ETBE, Anteil au erneuerbaren Quellen	ısWie beim Produktionsw	eg für Ethanol
TAEE, Anteil au erneuerbaren Quellen	ısWie beim Produktionsw	eg für Ethanol
Biodiesel aus Raps	45,5	50,1
Biodiesel au Sonnenblumen	ıs40,0	44,7
Biodiesel au Sojabohnen	ıs42,2	47,0
Biodiesel au Palmöl (offene Abwasserbecken)	is63,3 es	75,5
	ıs46,1	51,4
(Verarbeitung m Methanbindung a der Ölmühle)		
Biodiesel au Altspeiseöl	ıs11,2	14,9
Biodiesel au tierischen Fetten (*2)	ıs15,2	20,7
Hydriertes Rapsöl	45,8	50,1
Hydriertes Sonnenblumenöl	39,4	43,6
Hydriertes Sojaöl	42,2	46,5
Hydriertes Palmo (offenes Abwasserbecken)	öl62,1	73,2
Hydriertes Palmo (Verarbeitung m Methanbindung a der Ölmühle)	it	47,9
Hydriertes Altspeiseöl	11,9	16,0
Hydrierte tierisch Fette (*2)	ne16,0	21,8
Reines Rapsöl	38,5	40,0
Reines Sonnenblumenöl	32,7	34,3
Reines Sojaöl	35,2	36,9
Reines Palmo (offenes Abwasserbecken)	öl56,4	65,5
,		

Reines Palmöl38,5 40,3

(Verarbeitung mit Methanbindung an der Ölmühle)

Reines Altspeiseöl 2,0 2,2

(*1)

Standardwerte für KWK-Verfahren gelten nur, wenn die gesamte Prozesswärme durch KWK erzeugt wird.

Hinweis: Gilt nur für Biokraftstoffe aus tierischen Nebenprodukten, die in der Verordnung (EG) Nr. 1069/2009 als Material der Kategorie 1 bzw. 2 eingestuft werden; in diesem Fall werden Emissionen im Zusammenhang mit der Entseuchung als Teil der Tierkörperverwertung nicht berücksichtigt.

2. Disaggregierte Standardw	erte für Biomethan							
BiomethanproduktionssystemTechnologische Optionen			TYPISCHER WERT [gCO2eq/MJ]					
Anbau	Verarbeitung	Aufbereitung	Transpo	rtKompressio an d Tankstelle	onGutschrift erMist- /Güllenut		auVerarbeitu	ngAu
Gülle	Offenes Gärrückstandslage	keine erAbgasverbrennu	0,0 ung	84,2	19,5	1,0	3,3	- 1
Abgasverbrennung	0,0	84,2	4,5	1,0	3,3	- 124,	0,0 4	11
Geschlossenes Gärrückstandslager	keine Abgasverbrennung	0,0 g	3,2	19,5	0,9	3,3	- 111,9	0,0
Abgasverbrennung	0,0	3,2	4,5	0,9	3,3	- 111,	0,0 9	4,4
Mais, gesamte Pflanze	Offenes Gärrückstandslage	keine erAbgasverbrennu	18,1 ung	20,1	19,5	0,0	3,3	_
Abgasverbrennung	18,1	20,1	4,5	0,0	3,3	_	18,1	28,
Geschlossenes Gärrückstandslager	keine Abgasverbrennung	17,6 g	4,3	19,5	0,0	3,3	_	17,
Abgasverbrennung	17,6	4,3	4,5	0,0	3,3	_	17,6	6,0
Bioabfall	Offenes Gärrückstandslage	keine erAbgasverbrennu	0,0 ung	30,6	19,5	0,6	3,3	_
Abgasverbrennung	0,0	30,6	4,5	0,6	3,3	_	0,0	42,
Geschlossenes Gärrückstandslager	keine Abgasverbrennunį	0,0 g	5,1	19,5	0,5	3,3	_	0,0
Abgasverbrennung	0,0	5,1	4,5	0,5	3,3	_	0,0	7,2
Typische Werte und Standardwerte für Biomethan								
Biomethanproduktionssyste	mTechnologische Optionen	Treibhausgas emissionen — typische Wert	emissione	n				
		(gCO2eq/MJ)	(gCO2eq/N	1 J)				
Biomethan aus Gülle	Offenes Gärrückstandslage keine Abgasverbrennun		22					
Offenes Gärrückstandslage	1							

Abgasverbrennung (2)

- 79 Geschlossenes Gärrück-- 88

standslager, keine

Abgasverbrennung

Gärrück-- 103 - 100 Geschlossenes

standslager, Abgasverbrennung

Biomethan aus Mais (gesamteOffenes Gärrück-58 73

Pflanze) standslager, keine

Abgasverbrennung

Offenes Gärrück-standslage Abgasverbrennung	er,43	52	
Geschlossenes Gärrüc standslager, keir		51	
Abgasverbrennung			
Geschlossenes Gärrüd standslager, Abgasverbrennung	:k-26	30	
Biomethan aus Bioabfall	Offenes Gärrü standslager, ke Abgasverbrennung	ine	71
Offenes Gärrück-standslage Abgasverbrennung	er,36	50	
Geschlossenes Gärrüc standslager, keir		35	
Abgasverbrennung	1.40	4.4	
Geschlossenes Gärrüc standslager, Abgasverbrennung	:K-1U	14	
(1)			
Diese Kategorie umfasst Aufbereitung von Biogas z Swing Adsorption — PSA), D PWS), Membrantrenntechni mit einem organischen Lösu schließt die Emission von Methan in den Abgasen ein.	zu Biomethan: Druck vruckwasserwäsche (F k, kryogene Trennung ungsmittel (Organic Pl 0,03 MJ CH4/MJ Bio	wechsel-/ Pressurise g und phy hysical Sci	Adsorption (Pressure d Water Scrubbing — sikalische Absorption rubbing — OPS). Dies
(2)			
Diese Kategorie umfasst Aufbereitung von Biogas zu Scrubbing — PWS), sofer Adsorption (Pressure Swi (Chemical Scrubbing), ph Lösungsmittel (Organic Phy- kryogene Trennung. Für of berücksichtigt (das Methan i	Biomethan: Druckwa rn das Wasser auf ng Adsorption — ysikalische Absorpti sical Scrubbing — OF diese Kategorie werd	sserwäsch bereitet PSA), ch on mit PS), Memb	ne (Pressurised Water wird, Druckwechsel- emische Absorption einem organischen orantrenntechnik und e Methanemissionen
Typische Werte und Stand Treibhausgasemissionen mi			ermischung von Mist/Gülle und Mais:
Biomethanproduktionssyste	-	_	rStandardwert
(gCO2eq/MJ)	(gCO2eq/MJ)		
Mist/Gülle — Mais 80 % — 20 %	Offenes Gärrückstandslager keine	32 r,	57
	Abgasverbrennung		
Offenes Gärrückstandslage Abgasverbrennung	er,17	36	
Geschlossenes Gärrückstandslager, kei Abgasverbrennung	– 1 ne	9	
Geschlossenes Gärrückstandslager,	- 16	- 12	
Abgasverbrennung			
Mist/Gülle — Mais 70 % — 30 %	Offenes Gärrückstandslager keine Abgasverbrennung		62
Offenes Gärrückstandslage Abgasverbrennung	er,26	41	
Geschlossenes Gärrückstandslager, keir	13 ne	22	

Abgasverbrennung

Geschlossenes Gärrückstandslager, Abgasverbrennung	- 2	1	
Mist/Gülle — Mais 60 % – 40 %	Offenes Gärrückstandslager keine Abgasverbrennung		
Offenes Gärrückstandslager Abgasverbrennung	,31	45	
Geschlossenes Gärrückstandslager, keine Abgasverbrennung	22	31	
Geschlossenes Gärrückstandslager, Abgasverbrennung	7	10	
Bei Biomethan, das in Forn	n von komprimiert	em Biometha	ın a

Bei Biomethan, das in Form von komprimiertem Biomethan als Kraftstoff für den Verkehr verwendet wird, müssen zu den typischen Werten 3,3 gCO2eq/MJ Biomethan und zu den Standardwerten 4,6 gCO2eq/MJ Biomethan addiert werden.

 E.Geschätzte disaggregierte Standardwerte für künftige Biokraftstoffe, die im Januar 2016 nicht oder nur in vernachlässigbaren Mengen auf dem Markt waren

Disaggregierte Standardwerte für den Anbau: "eec" gemäß Definition in Teil C dieses Anhangs einschließlich N2O- Emissionen (darunter Späne von Holzabfall oder Kulturholz)

Produktions weg Treibhausgas emission en Tre

der — typischer Wert — Standardwert

Biokraftstoffe (gCO2eq/MJ) (gCO2eq/MJ)
und flüssigen

Biobrennstoffe

Ethanol aus1,8 1,8

Weizenstroh

Fischer- 3,3 3,3 Tropsch-Diesel

aus Abfallholz in Einzelanlage

Fischer- 8,2 8,2

Tropsch-Diesel aus Kulturholz in Einzelanlage

Fischer- 3,3 3,3

Tropsch-Ottokraftstoff aus Abfallholz in Einzelanlage

Fischer- 8,2 8,2

Tropsch-Ottokraftstoff aus Kulturholz in Einzelanlage

Dimethylether 3,1 3,1

(DME) aus Abfallholz in Einzelanlage

Dimethylether 7,6 7,6

(DME) aus Kulturholz in Einzelanlage

Methanol aus3,1 3,1 Abfallholz in

Einzelanlage

Methanol aus7,6 7,6

Kulturholz ir Einzelanlage

```
Fischer-
                                     2,5
Tropsch-Diesel
aus
           der
Vergasung von
Schwarzlauge,
integriert
Zellstofffabrik
Fischer-
              2,5
                                     2,5
Tropsch-
Ottokraftstoff
aus
Vergasung von
Schwarzlauge,
integriert
Zellstofffabrik
Dimethylether 2,5
                                     2,5
(DME) aus der
Vergasung von
Schwarzlauge,
integriert
Zellstofffabrik
                                     2,5
Methanol aus2,5
der Vergasung
von
Schwarzlauge,
integriert
Zellstofffabrik
MTBE, AnteilWie beim Produktionsweg für Methanol
aus
erneuerbaren
Quellen
Disaggregierte Standardwerte für N2O-Bodenemissionen (diese sind bereits in den
disaggregierten Werten in Tabelle "eec" für Emissionen aus dem Anbau enthalten)
Produktions weg Treibhausgas emission en Treibhausgas emission en \\
              — typischer Wert
                                     — Standardwert
Biokraftstoffe (gCO2eq/MJ)
                                     (gCO2eq/MJ)
und flüssigen
Biobrennstoffe
Ethanol
           aus0
                                     0
Weizenstroh
Fischer-
                                     0
Tropsch-Diesel
aus Abfallholz
in Einzelanlage
Fischer-
                                     4,4
Tropsch-Diesel
aus Kulturholz
in Einzelanlage
Fischer-
                                     0
Tropsch-
Ottokraftstoff
aus Abfallholz
in Einzelanlage
Fischer-
              4,4
                                     4,4
Tropsch-
Ottokraftstoff
aus Kulturholz
in Einzelanlage
Dimethylether 0
                                     0
(DME)
           aus
Abfallholz
Einzelanlage
Dimethylether 4,1
                                     4,1
(DME)
           aus
Kulturholz in
Einzelanlage
```

Methanol aus0 0 Abfallholz Einzelanlage Methanol aus4,1 4,1 Kulturholz Einzelanlage Fischer-0 Tropsch-Diesel der aus Vergasung von Schwarzlauge, integriert Zellstofffabrik Fischer-0 Tropsch-Ottokraftstoff aus der Vergasung von Schwarzlauge, integriert Zellstofffabrik Dimethylether 0 0 (DME) aus der Vergasung von Schwarzlauge, integriert Zell stoff fabrikMethanol aus0 0 der Vergasung von Schwarzlauge, integriert Zellstofffabrik MTBE, AnteilWie beim Produktionsweg für Methanol aus erneuerbaren Quellen Disaggregierte Standardwerte für die Verarbeitung: "ep" gemäß Definition in Teil C dieses Anhangs Produktions weg Treibhausgas emission en Treibhausgas emission en— typischer Wert der — Standardwert Biokraftstoffe (gCO2eq/MJ) (gCO2eq/MJ) und flüssigen Biobrennstoffe Ethanol aus4,8 6,8 Weizenstroh Fischer-0,1 Tropsch-Diesel aus Abfallholz in Einzelanlage Fischer-0,1 0,1 Tropsch-Diesel aus Kulturholz in Einzelanlage Fischer-0,1 0,1 Tropsch-Ottokraftstoff aus Abfallholz in Einzelanlage Fischer-0,1 0,1 Tropsch-Ottokraftstoff aus Kulturholz in Einzelanlage

```
Dimethylether 0
                                    0
(DME)
Abfallholz
Einzelanlage
Dimethylether 0
                                    0
(DME)
Kulturholz in
Einzelanlage
Methanol aus0
                                    0
Abfallholz
Einzelanlage
Methanol aus0
                                    0
Kulturholz in
Einzelanlage
Fischer-
              0
                                    0
Tropsch-Diesel
aus
           der
Vergasung von
Schwarzlauge,
integriert
Zellstofffabrik
Fischer-
                                    0
Tropsch-
Ottokraftstoff
aus
Vergasung von
Schwarzlauge,
integriert
Zellstofffabrik
Dimethylether 0
                                    0
(DME) aus der
Vergasung von
Schwarzlauge,
integriert
Zellstofffabrik
Methanol aus0
                                    0
der Vergasung
von
Schwarzlauge,
integriert
Zell stoff fabrik\\
MTBE, AnteilWie beim Produktionsweg für Methanol
aus
erneuerbaren
Quellen
Disaggregierte Standardwerte für den Transport und Vertrieb: "etd" gemäß Definition in Teil C
dieses Anhangs
Produktions weg Treibhausgas emission en Treibhausgas emission en \\
             — typischer Wert

    Standardwert

Biokraftstoffe (gCO2eq/MJ)
                                    (gCO2eq/MJ)
und flüssigen
Biobrennstoffe
Ethanol
          aus7,1
                                    7,1
Weizenstroh
Fischer-
            12,2
                                    12,2
Tropsch-Diesel
aus Abfallholz
in Einzelanlage
Fischer-
           8,4
                                    8,4
Tropsch-Diesel
aus Kulturholz
in Einzelanlage
```

Fischer-12,2 12,2 Tropsch-Ottokraftstoff aus Abfallholz in Einzelanlage Fischer-8,4 Tropsch-Ottokraftstoff aus Kulturholz in Einzelanlage Dimethylether 12,1 12,1 (DME) aus Abfallholz Einzelanlage Dimethylether 8,6 8,6 (DME) aus Kulturholz Einzelanlage Methanol aus12,1 12,1 Abfallholz Einzelanlage Methanol aus8,6 8,6 Kulturholz Einzelanlage Fischer-7,7 Tropsch-Diesel aus der Vergasung von Schwarzlauge, integriert Zellstofffabrik Fischer-7,9 7,9 Tropsch-Ottokraftstoff aus Vergasung von Schwarzlauge, integriert Zellstofffabrik Dimethylether 7,7 7,7 (DME) aus der Vergasung von Schwarzlauge, integriert Zellstofffabrik Methanol aus7,9 7,9 der Vergasung von Schwarzlauge, integriert Zellstofffabrik

MTBE, AnteilWie beim Produktionsweg für Methanol aus

erneuerbaren

Quellen

Disaggregierte Standardwerte nur für den Transport und Vertrieb des fertigen Brennstoffs. Diese sind bereits in der Tabelle als Emissionen bei Transport und Vertrieb "etd" gemäß Definition in Teil C dieses Anhangs enthalten; die folgenden Werte können jedoch hilfreich sein, wenn ein Wirtschaftsteilnehmer die tatsächlichen Transportemissionen nur für den Rohstofftransport angeben will.

ProduktionswegTreibhausgasemission der — typischer Wert	nenTreibhausgasemissionen — Standardwert
Biokraftstoffe (gCO2eq/MJ)	(gCO2eq/MJ)
und flüssigen Biobrennstoffe	
Ethanol aus1,6 Weizenstroh	1,6
Fischer- 1,2 Tropsch-Diesel aus Abfallholz in Einzelanlage	1,2
Fischer- 1,2 Tropsch-Diesel aus Kulturholz in Einzelanlage	1,2
Fischer- 1,2 Tropsch- Ottokraftstoff aus Abfallholz in Einzelanlage	1,2
Fischer- 1,2 Tropsch- Ottokraftstoff aus Kulturholz in Einzelanlage	1,2
Dimethylether 2,0 (DME) aus Abfallholz in Einzelanlage	2,0
Dimethylether 2,0 (DME) aus Kulturholz in Einzelanlage	2,0
Methanol aus2,0 Abfallholz in Einzelanlage	2,0
Methanol aus2,0 Kulturholz in Einzelanlage	2,0
Fischer- 2,0 Tropsch-Diesel aus der Vergasung von Schwarzlauge, integriert in Zellstofffabrik	2,0
Fischer- 2,0 Tropsch- Ottokraftstoff aus der Vergasung von Schwarzlauge, integriert in	2,0
Zellstofffabrik Dimethylether 2,0	2,0
(DME) aus der Vergasung von Schwarzlauge, integriert in Zellstofffabrik	•
Methanol aus2,0 der Vergasung von Schwarzlauge, integriert in Zellstofffabrik	2,0

MTBE, AnteilWie beim Produktionsweg für Methanol aus erneuerbaren

Quellen

Insgesamt für Anbau, Verarbeitung, Transport und Vertrieb

Produktions weg Treibhausgas emission en Tre

 typischer Wert Standardwert

Biokraftstoffe (gCO2eq/MJ)

und flüssigen

(gCO2eq/MJ)

Biobrennstoffe

Ethanol aus13,7

15,7

Weizenstroh

Fischer-15,6 15,6

Tropsch-Diesel aus Abfallholz in Einzelanlage

> 16,7 16,7

Fischer-Tropsch-Diesel aus Kulturholz in Einzelanlage

Fischer-15,6 15,6

Tropsch-Ottokraftstoff aus Abfallholz in Einzelanlage

Fischer-16,7 16,7

Tropsch-Ottokraftstoff aus Kulturholz in Einzelanlage

Dimethylether 15,2 15,2

(DME) aus Abfallholz in Einzelanlage

Dimethylether 16,2 16,2

(DME) Kulturholz in Einzelanlage

Methanol aus15,2 15,2

Abfallholz Einzelanlage

Methanol aus16,2 16,2

Kulturholz in Einzelanlage

Fischer-10,2 10,2

Tropsch-Diesel aus Vergasung von Schwarzlauge, integriert in Zellstofffabrik

Fischer-10,4 10,4

Tropsch-Ottokraftstoff Vergasung von Schwarzlauge, integriert Zellstofffabrik

Dimethylether 10,2 10,2 (DME) aus der
Vergasung von
Schwarzlauge,
integriert in
Zellstofffabrik

Methanol aus10,4 10,4

der Vergasung

von

Schwarzlauge, integriert in Zellstofffabrik

MTBE, AnteilWie beim Produktionsweg für Methanol

aus

erneuerbaren

Quellen

Schlagworte Abersetzung, Lebensmittel, Kraftstoff, Standardtreibhausemission,
Standardtreibhausgasemission Im RIS seit 14.12.2022 Zuletzt aktualisiert am 14.12.2022
Gesetzesnummer 20008075 Dokumentnummer NOR40248949 European Legislation Identifier
(ELI) https://ris.bka.gv.at/eli/bgbl/ii/2012/398/ANL10/NOR40248949

Navigation im Suchergebnis

Zum Seitenanfang . Über diese Seite

• © 2025 Bundeskanzleramt der Republik Österreich

In Kraft seit 01.01.2023 bis 31.12.9999

© 2025 JUSLINE

 $\label{eq:JUSLINE} \textbf{JUSLINE} \textbf{@} ist eine Marke der ADVOKAT Unternehmensberatung Greiter \textbf{\&} Greiter GmbH. \\ www.jusline.at$